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STRUCTURAL/REACTIVITY STUDIES (11): REACTIONS OF 
LIGNIN MODEL COMPOUNDS WITH PULPING ADDITIVES 

Donald R. Dimmel and Lois P. Schuller 
The Institute of Paper Chemistry 

P.O. Box 1039, Appleton, Wisconsin 54912 

ABSTRACT 

Lignin m d e l  compounds, capable of forming quinonemethides 
and having different substituents on the quinonemethide (A) rings 
and 6-aryl ether (B) rings, have been degraded under a variety of 
conditions in the presence of NaOH (soda), NaOH/Na2S (kraft), 
NaOH/glucose, and NaOHIAHQ (soda/AQ). Substituent changes on ring 
B had no effect on the extent of model fragmentation in the pre- 
sence of excess AHQ and NaSH. Substituent changes on ring A had 
large effects on fragmentation under soda/AQ and kraft conditions. 
These substituent-reactivity relationships indicate that the slow 
step in the mechanism for model fragmentation under soda/AQ and 
kraft conditions is quinonemethide formation. Conditions aimed at 
demonstrating the existence of electron-transfer fragmentation of 
the model compounds gave results which were inconclusive, but 
demonstrated that equilibrium reactions between quinonemethide 
intermediates exist. 

INTRODUCTION 

Single electron transfer (SET) reactions appear to offer a way 
to remove lignin from w0od.l 

the importance of these reactions in anthraquinone (AQ) pulping 

systems and to utilize this chemistry to achieve favorable pulping 
results. Scheme I presents a mchanism by which SET reactions be- 

tween anthrahydroquinone (AHQ) species and l i g n i n  quinonemethide (QM) 
species can lead to lignin bond ruptures (and thus delignification). 

We are studying ways to demonstrate 
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DIHMEL AND SCHULLER 566 

The r e a c t i o n s  o u t l i n e d  i n  Scheme I have been v e r i f i e d  by room tem- 

p e r a t u r e  e l e c t r o c h e m i c a l  s t u d i e s  of l i g n i n  model QMs in o r g a n i c  

s o l v e n t s .  2 

The SET mechanism p r e d i c t s  t h a t  a phenola te  r a d i c a l  and i o n  

w i l l  be produced from the f ragmenta t ion  of t h e  QU' i n t e r m e d i a t e  

( s t e p  2). The s p e c i f i c  QM' s t r u c t u r e  shown i n  Scheme I probably 

r e p r e s e n t s  t h e  most s t a b l e  of s e v e r a l  p o s s i b l e  resonance  forms f o r  

t h e  QM- i n t e r m e d i a t e .  A homolyt ic ,  concer ted  c leavage  of t h e  6-  

a r y l  e t h e r  bond of t h e  QM- i n t e r m e d i a t e  would produce a B r i n g  

r a d i c a l  and a n  A r i n g  ion; h e t e r o l y t i c  c leavage  would produce a B 

r i n g  a n i o n  and a % - c a t i o n ,  which upon e l e c t r o n  s h i f t s ,  would g i v e  

an A r i n g  r a d i c a l .  This lat ter nmde of c leavage  could  a l s o  be 

concer ted  - 
I n  c o n t r a s t  t o  t h i s  " r a d i c a l "  view of AHQ induced d e l i g n i f i -  

c a t i o n  chemis t ry ,  Scheme I1 o f f e r s  a g e n e r a l l y  accepted  " ionic"  

mechanism. 

a n  "adduct"; i n  a subsequent  s t e p ,  the adduct  f ragments  t o  AQ and 

t w o  p h e n o l a t e  This chemistry i s  analogous t o  some of t h e  

i o n i c  mechanisms proposed f o r  soda  and k r a f t  p u l p i n g  systems.' 

Here MQ-* adds t o  t h e  a-carbon of a l i g n i n  QM t o  g i v e  

MECHANISM DIPPEKENTIATION 

A key d i f f e r e n c e  between t h e  adduct  and SET mechanisms of 

d e l i g n i f i c a t i o n  is t h a t  t h e  former produces o n l y  p h e n o l a t e  

f ragments ,  while t h e  lat ter g i v e s  some p h e n o l a t e  r a d i c a l  f ragments .  

I f  r u p t u r e  of t h e  6 - a r y l  e t h e r  bonds is the slow s t e p  in d e l i g n i f i -  

c a t i o n ,  t h e  SET and adduct  mechanisms p r e d i c t  t h a t  s u b s t i t u t e n t  

t y p e s  on the aromatic fragments  could have large e f f e c t s  on degra- 

d a t i o n  rates. Phenola te  i o n s ,  as produced i n  t h e  adduct  mechanism, 

are e l e c t r o n - r i c h  s p e c i e s  and t h u s  are s t a b i l i z e d  by e l e c t r o n -  

withdrawing r i n g  s u b s t i t u e n t s . 8  

nism) are electron-poor  s p e c i e s  and are t h e r e f o r e  s t a b i l i z e d  

by e l e c t r o n - r e l e a s i n g  r i n g  s u b s t i t u e n t s .  

Phenola te  r a d i c a l s  (SET mecha- 

Simple f r a g m e n t a t i o n s  of l i g n i n  model compounds are, however, 

m u l t i s t e p  r e a c t i o n s ,  of which t h e  f ragmenta t ion  s t e p s  may not  be 
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SCHEME I 
D e l i g n i f i c a t i o n  v i a  AHQ-Induced SET React ions  

t h e  slow s t e p s  i n  t h e  mechanisms. I n  f a c t ,  quinonemethide genera- 

t i o n  is probably t h e  slow s t e p  i n  NaSH-induced l i g n i n  model 

f ragmenta t ion  react ions. '  

mer iza t ion  of model diastereomers is p r a c t i c a l l y  the same as t h e  

rate of g u a i a c o l  (G-OH) produced when e i t h e r  d ias te reomer  is sub- 

j e c t e d  t o  k r a f t  pulping condi t ions  (Scheme 111). These d a t a  

sugges t  t h a t  the d i f f i c u l t  s t e p  in t h e  i s o m e r i z a t i o n ,  namely 

g e n e r a t i o n  of t h e  QM, i s  a l s o  t h e  mst d i f f i c u l t  s t e p  i n  t h e  

m u l t i s t e p  r e a c t i o n s  leading t o  f ragmenta t ion  of s u b s t r a t e s .  

Miksche has shown t h a t  t h e  rate of i so-  

Miksche's very I n t e r e s t i n g  d a t a  l e a v e  some unanswered 

ques t ions .  For example, why w a s  the rate of product ion  of 

g u a i a c o l  from the e r y t h r o  isomer only about  112 t h a t  of t h e  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



568 DIMHEL AND SCHULLER 

AQ 

i 

adduct 

4 15) 

P 
0- CH 

0- 

phenol fragments 

SCHEME I1 
Deligniflcation v ia  AHQ Adduct Reactions 

c"H- 

CHIO 

G O H  1 G = a  

saw I11 
Model Isomerization and Fragmentation by Miksche9 
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STRUCTURAL/REACTIVITY STUDIES. 11 569 

t h r e o  isomer? 

roughly 40% g r e a t e r  than i s o m e r i z a t i o n  from t h e  e r y t h r o  isomer, 

but  20% less from the t h r e o  isomer? 

t o  d e f i n e  the r e l a t i v e  rates of t h e  v a r i o u s  s t e p s .  

formation may be s i g n i f i c a n t l y  slover OK roughly comparable t o  

subsequent s teps .  

Also, why w a s  t h e  rate of g u a i a c o l  product ion - 

Miksche’s s tudy  d i d  not  t r y  

Quinonemethide 

Using k i n e t i c  and compet i t ive  experiments  wi th  l i g n i n  model 

compounds, Gierer and Ljunggren have def ined  some r e l a t i v e  rates 

of r e a c t i o n s  involv ing  quinonemethides. lo In  a d d i t i o n ,  t h e r e  is 
evidence t h a t  AHQ-2 reacts f a s t e r  w i t h  QMs than  does NaSH.ll 

Although not a QM r e a c t i o n ,  f ragmenta t ion  of 6-ary l  e t h e r  bonds by 

a-0- a s s i s t a n c e  appears  t o  be a slow r e a c t i o n  r e l a t i v e  t o  t h e  

var ious  QM r e a c t i o n s .  [Fur ther  v e r i f i c a t i o n  of t h i s  s ta tement  is 

p a r t  of t h i s  p r e s e n t  s tudy . ]  F igure  1 a t t e m p t s  t o  t i e  a l l  of t h i s  

information t o g e t h e r  i n  a h y p o t h e t i c a l  energy diagram. 

The diagram, which relates o n l y  t o  a -hydroxyd-ary l  e t h e r  

l i g n i n  u n i t s .  i n d i c a t e s  t h a t  t h e  r e a c t i o n  o p t i o n s  for a soda 

pulp ing  system are poor, c o n s i s t i n g  of a h igh  energy fragmentat ion 

pathway and numerous u n d e s i r a b l e  by-product  pathways (two v i n y l  

e t h e r  genera t ion  r e a c t i o n s  and condensat ion r e a c t i o n s ) .  A good 

pulping a d d i t i v e ,  such as SH‘ or AHQ’2, provides  a l o w  energy 

r o u t e  t o  f ragmenta t ion  ( d e l i g n i f i c a t i o n )  which supercedes many of 

t h e  undes i rab le  reac t ions .  

I f  t h e  p i c t u r e  presented  above is c o r r e c t ,  s tudying  t h e  chem- 

i s t r y  of a d d i t i v e  induced d e l i g n i f i c a t i o n  is a very complicated en- 

deavor. S p e c i f i c a l l y ,  how do w e  d e f i n e  t h e  chemisty of QM-AHQ-2 

i n t e r a c t i o n s  under pulping c o n d i t i o n s  i f  the r e a c t i o n s  of impor- 

tance come a f t e r  the rate-determining s t e p ,  namely QM genera t ion?  

S u b s t i t u e n t  e f f e c t s ,  i n  combination w i t h  compet i t ive  model degra- 

d a t i o n  in t h e  presence of l i m i t e d  amounts of a d d i t i v e s ,  could 

poss ib ly  provide t h e  answer; t h e  theory  behind t h i s  approach w i l l  

be presented i n  a later sec t ion .  

I n  t h i s  s tudy ,  l i g n i n  model compounds w i t h  d i f f e r e n t  r i n g  A 

and r i n g  B s u b s t i t u e n t s  were r e a c t e d  i n  t h e  presence  of var ious  

pulping a d d i t i v e s .  Our g o a l  w a s  t o  d e t e c t  r e a c t i v i t y  d i f f e r e n c e s  
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REACTION COOR DlNATE 

Figure 1. Hypothetical energy dlagram for the reactions of phenolic 
lignin end units. 
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Figure  2. Phenol y i e l d s  as a f u n c t i o n  of t ime f o r  degrada t ions  
of lmdels  1A-D (1 equiv. each,  in the same r e a c t o r )  a t  
150°C i n  t h e  presence  of 180 equiv.  of NaOH and 20 
equiv. of MQ d i a c e t a t e .  A t  t h e  s t a r t  of t h e  r e a c t i o n  
t h e r e  should  be 100 equiv. of NaOR (Z5/model) and 20 
equiv. (5/model) of MQ-2 a v a i l a b l e .  

which vould provide informat ion  d e f i n i n g  s p e c i f i c  r e a c t i o n  mecha- 

nisms wi th  regard t o  @-addi t ive r e a c t i o n s .  The previous r e p o r t  

descr ibed  t h e  lmdel s y n t h e s i s ,  s e l e c t i o n ,  and g e n e r a l  degrada t ion  

procedure,  a long w i t h  t h e  product  a n a l y s i s .  '* That r e p o r t  

demonstraced t h a t  t h e  slow s t e p  i n  t h e  mechanism for m d e l  

f ragmenta t ion  under soda c o n d i t i o n s  is c leavage  of t h e  6 -a ry l  

e t h e r  bond- 

RESULTS 

Degradation of Bing 1 Analog Models 1A-D 

w i t h  5 equiv. of MQ-' per  model for  v a r i o u s  t i m e  i n t e r v a l s ,  and 

A mixture of models 1A-D was h e a t e d  a t  150°C i n  aq. a l k a l i  
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5 7 2  DIMMEL AND SCHULLER 

the y i e l d s  of phenols 3A-D determined. 

2 ,  i n d i c a t e  no s i g n i f i c a n t  d i f f e rences  i n  phenol y i e l d  (i-e., 

fragmentation tendencies )  f o r  t he  fou r  models at short r eac t ion  

t i m e s .  Thus, t h e  electron-donating or r e l e a s i n g  powers of t he  B 
r i n g  s u b s t i t u e n t s  play no r o l e  i n  t h e  r a t e  determining s t e p  of the  

fragmentation mechanism. 

The d a t a ,  as seen  in Fig.- 

The f a c t  t h a t  t h e r e  w a s  a y i e l d  d i f f e r e n c e  a t  long r eac t ion  

times is probably due t o  secondary reac t ions .  A gas  chromatography- 

mass spectroscopy (GC-MS) ana lys i s  of t h e  product mixtures showed 

s t a r t i n g  ma te r i a l s ,  v iny l  e the r s  (dehydration products  of the  

s t a r t i n g  ma te r i a l s ) ,  phenols 3A-D, and small amounts of 

v inylguaiacol  (2 )  and guaiacol  (from r i n g  A cleavage).  The low 

l e v e l s  of 2 a r e  a r e s u l t  of i t s  tendency t o  polymerize in t h e  pre- 

sence of MQ; sometimes t h i s  polymerization inco rpora t e s  o ther  

phenol products,13 leading  t o  an apparent lower y i e l d  of simple 

phenols. Heating j u s t  t he  simple phenols i n  aq. NaOH a t  150°C led 

t o  no phenol losses .  

R - # - 
CHI-0 A CHI 

I 
B C f  

C OCH, 

CH,O D CFl 
3 OH OH 

1 2 

Many d a t a  po in t s  were co l l ec t ed  to  ensure  t h e  v a l i d i t y  of t he  

observed trends.  The abso lu te  y i e l d s  may not be accu ra t e ly  known, 

but we are comfortable i n  comparing degrada t ions  done under iden- 

t i c a l  conditions.  

Each model w a s  degraded i n  the  presence of s e v e r a l  d i f f e r e n t  

add i t ives .  These degradations were done a t  135°C where ( a )  soda 

r eac t ions  play less of a r o l e  and (b) r e a c t i v i t y  d i f f e r e n c e s  - as  

compared t o  150" - will be more pronounced. W e  a l s o  began 

employing glucose as a reagent f o r  reducing AQ t o  AHQe2; the  glu- 
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cose method appears t o  be more r e l i a b l e  than t h e  AHQ-d ace ta t e  

hydro lys is  method f o r  producing known l e v e l s  of AHQ.14 The glu- 
cose method involves prewarming a ndxture of model, AQ and glu- 

cose i n  aq. a l k a l i  at 60' f o r  30 minutes. 

promote the  formation of AHQ-2 and t h e  p a r t i a l  des t ruc t ion  of 

g1ucosel5 a t  a temperature where QM formation should not occur. 

Workup of t he  prewarmed so lu t ions  showed no model fragmenta- 

t ion.  

These conditions 

The numerous model degradations ind ica t ed  t h a t  t he  order of 

fragmentation e f f i c i ency  in t he  presence of an excess  add i t ive  i s  

sodaIMQ > soda/SH- > soda/glucose > soda (an example is given in 
Fig. 3). 

The high e f f i c i ency  of t he  soda/AHQ is not because of the pres- 

ence of glucose or glucose by-products i n  t h i s  system. This point 

was es tab l i shed  by performing s e v e r a l  con t ro l  runs, including 

prewarming a soda/SH- system i n  the  presence of glucose and ob- 

serving no increased phenol y i e l d s  as compared t o  j u s t  a soda/SH- 

system. Apparently, glucose is a r e l a t i v e l y  poor reac tan t  i n  the 

presence of t he  m c h  b e t t e r  AHQ and SH ions. I n t e r e s t i n g l y ,  the  

e f fec t iveness  of glucose alone in a l k a l i ,  as a promoter of 

fragmentation, i s  only s l i g h t l y  reduced (ca. 10%) by the  30 minute, 

60°C prevarming procedure. 

A s t a t i s t i c a l  ana lys i s  program16 w a s  app l i ed  t o  the  135°C 

model-additive reac t ions  t o  he lp  determine whether fragmentation 

y i e lds  were d i f f e r e n t  or  i den t i ca l .  

1 compares confidence l eve l s  of y i e l d  d i f f e rences  f o r  lurQ 

degradations of t he  various w d e l s .  The s ta t i s t ica l  ana lys i s  

i nd ica t e s  a law degree of confidence t h a t  t h e  AHQ runs have d i f -  

f e r en t  r a t e s  of fragmentation; t he  f a c t  t h a t  t h e  @CP3 model (ID) 
confidence is somewhat high in two cases is  probably due more t o  

y i e ld  d i f fe rences  at long reac t ion  times r a t h e r  than shor t  reac- 

t i o n  t i m e s  (i.e., such as i n  Pig. 2). 

The upper r i g h t  s ide  of Table 

The s t a t i s t i c a l  ana lys i s  (lower l e f t  s i d e  of Table 1)  also 

i nd ica t e s  a low degree of confidence t h a t  t he  SH- runs have 

d i f f e r e n t  r a t e s  of fragmentation. There is, however, a high 
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m 

MI 

80 

4 0  

20 

a 

Figure 3. Phenol y i e l d  as a function of t i m e  f o r  t he  degradation 
of model 1D in the  presence of d i f f e r e n t  addi t ives  
a t  the 5 equiv. l e v e l  a t  13S°C. 

TABLE 1 

S t a t i s t i c a l  Analysis of the Data from Kraft  and AHQ Degradations 
of Model 1A-D at  135OCa.b 

Compound 1A IB 1c 1D 

aThe y i e ld  time p r o f i l e s  of two runs were compared 
Numbers close t o  using a BMDP s t a t i s t i c a l  program.16 

1-00 i nd ica t e  a high degree of confidence t h a t  the two 
sets of data are d i f f e ren t ;  general ly ,  any number below 
0.90 s i g n i f i e s  t h a t  the react ion rates are not s t a t i s t i -  
c a l l y  d i f f e ren t .  

b;,AHQ SH OAliQvsAHQ I Z I I S H =  SH. 
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STRUCTURAL/REACTIVITY STUDIES. I1 575  

degree of confidence, in at least two cases, t h a t  AHQ degradations 

cause more fragmentation than SH- degradations (Table 1, diagonal 

from upper l e f t  t o  lower r igh t ) .  

Although not shown i n  the  t a b l e ,  da ta  ana lys i s  ind ica ted  t h a t  

glucose induced fragmentation y i e l d s  d i f f e r  from model-to-mdel, 

with the  IIJCF-, model (1D) being the most reac t ive  and the  I=-CH-, 

m d e l  (1A) the  least reactive.  The d i f f e rence  here probably 

r e f l e c t s  soda degradation contributions.  The f a c t  t ha t  carbo- 

hydrates can cause model fragmentation r eac t ions  has support in 

t he  l i t e r a tu re .17  

Degradations of Ring B Analog Models 4A-D 

Degradation of t he  B-methyl model series (4) were performed 

a t  150°C with p a i r s  of models i n  the  same reac to r  i n  t he  presence 

of excess AHQ. One of the  model p a i r s  w a s  genera l ly  the  m-chloro 

compound 4B; t h i s  provided a check on the  consistency of t he  data. 

For example, the y i e ld  of m-chlorophenol from 4B w a s  80-83% a t  an 

80 m€n reac t ion  time i n  four d i f f e r e n t  runs. 

R - # 

A - rn-CH, 

B - rn-Cj? 

L CH 

- m-OCH, 

CHaO D - m-CF, 

E H OH OH 
3 

4 
F - 0-OCH, 

5 

The model fragmentation e f f i c i e n c i e s  as a func t ion  of t i m e ,  

with and without AEQ, are shown i n  Fig- 4. I n  the  absence of AHQ 
t he  m d e l s  displayed qu i t e  d i f f e r e n t  r e a c t i v i t i e s ;  the meta 

subs t i t uen t  order was CF3 > C 1  > OCH., > CH3. A similar order was 

observed i n  the  soda degradations of models 1A-D.12 In  the pres- 

ence of AHQ a l l  models reacted a t  approximately the  same r a t e  

a f t e r  applying c e r t a i n  assumptions. 
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Pl AHQ, NaOH, 150°C 

D I M E L  AND SCHULLER 

Figure 4. Phenol y i e l d s  as a func t ion  of t i m e  (5 ,  10, 15, 20. 30, 
40, 60, 80, and 160 min) for t h e  degrada t ion  of models 
4A-D,P (done as I equiv. p a i r s  i n  t h e  same r e a c t o r )  a t  
15OOC i n  t h e  presence of 75 equiv. of NaOH and 6 equiv. 
of AHQ d i a c e t a t e  (--> and i n  t h e  presence of 50 equiv. 
of NaOH (- -). Data po in t s  have been omi t ted  for 
c l a r i t y  reasons. 

The main assumption r e l a t e s  t o  t h e  f a c t  t he  B-methyl models 

a r e  r e l a t i v e l y  pure, bu t  not absolu te ly  pure compounds. Thus, t he  

somewhat lower y i e l d s  observed with _-OCH3 model (4C) may be due 

t o  impur i t i e s  i n  t h e  subs t r a t e .  

contaminated wi th  unsubs t i t u t ed  4E isomers and its y i e l d s  w e r e  

cor rec ted  accordingly. I n t e r e s t i n g l y ,  t h e  y i e l d  of phenol from 

degrada t ion  of t he  unsubs t i t u t ed  impurity i n  t h e  -61 sample 

matched t h e  o the r  substi tuted-phenol y i e lds .  

The m-Cl model 4B w a s  known t o  be 
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STRUCTURAL/REACTIVITY STUDIES. I1 577 

The h igh  y i e l d s  of gua iacol  observed in t h e  degrada t ion  of t h e  

- o-OCH3 model 4F can be a t t r i b u t e d  in p a r t  t o  some g u a i a c o l  produc- 

t i o n  from r i n g  A cleavage. 

o r i g i n a t e  from r i n g  A, were observed in a l l  degrada t ions  of B r i n g  

models 1A-D and 4A-D; f o r  example, at 15OoC, t h e  g u a i a c o l  y i e l d s  

increased  g r a d u a l l y  t o  roughly 1.5% a f t e r  one hour  f o r  soda and 

soda/AKQ degrada t ions  of 1A and about 9% under soda/NaSH con- 

d i t i o n s .  

Small amounts of g u a i a c o l ,  which mst 

Although t h e  8 l n e t h y l  series has i ts  problems, t h e  d a t a  from 

t h i s  series are c o n s i s t e n t  wi th  those  o€ t h e  n o n d - m e t h y l  1 series. 

The most e l e c t r o n r i t h d r a w i n g  and e l e c t r o n - r e l e a s i n g  s u b s t i t u e n t s ,  

CF3 and CH3, r e s p e c t i v e l y ,  d i sp layed  similar r e a c t i v i t i e s  in t h e  

presence of AHQ and q u i t e  d i f f e r e n t  r e a c t i v i t i e s  in t h e  presence 

of only NaOH. The phenol y i e l d s  in t h e  B l n e t h y l  series appear t o  

l e v e l  of f  b e t t e r  t h a n  t h e  non-B-methyl series a t  long r e a c t i o n  

t i m e s ,  p o s s i b l y  meaning less phenol l o s s e s  t o  competing s i d e  reac- 

t i o n s .  [ I soeugenol  ( 5 )  has less tendency t o  polymerize and does 

not  appear  t o  cause l o s s e s  in o t h e r  phenol  products.13] 

Degradat ion of Ring A Uodel Analogs 

S e v e r a l  m d e l s  d i f  f e t i n g  in t h e i r  A-ring s u b s t i t u e n t s  were 

a l s o  s tudied .  These models would be expec ted  t o  have q u i t e  d i f -  

f e r e n t  r e a c t i v i t i e s  if a s t e p  involv ing  t h e  A-ring w e r e  t h e  slow 

s t e p  in t h e  mechanism. S e v e r a l  s t e p s  in t h e  proposed mechanisms 

f o r  a d d i t i v e  induced fragmentat ion do i n v o l v e  t h e  A-ring; QM for -  

mation and a d d i t i o n  of ions o r  e l e c t r o n s  t o  Q M s  are examples. 

Degradat ion of r i n g  A model ana logs  having  -d3 s u b s t i t u e n t s  

i n  t h e i r  B rings a t  135°C in t h e  presence  of e i ther  AHQ or 
SH- showed t h e  fo l lowing  o r d e r  of f ragmenta t ion  e f f i c i e n c y :  

2',5'-dimethyl a l c o h o l  6B > 3'-methoxy a l c o h o l  1A > u n s u b s t i t u t e d  

a l c o h o l  6A (Fig. 5 ) .  Again, it appears  t h a t  f ragmenta t ion  y i e l d s  

wi th  AHQ are s l i g h t l y  better than  w i t h  SH- (conf idence  l e v e l s  of a 

s i g n i f i c a n t  d i f f e r e n c e  w e r e  0.989, 0.997, and 0.725). 
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DIHMEL AND SCHULLER 

Figure 5. Phenol y i e l d s  as a function of t i m e  f o r  t he  degradations 
of m d e l s  d i f f e r i n g  i n  t h e i r  r i ng  A s u b s t i t u e n t s  in the  
presence of excess l e v e l s  of AHQ (-1 and SH- (- -) at 
135°C in aqueous alkali. 

OH 

6 

# 

?A 

6A 

6B 

6 C  

- Rl 

H 

H 

CH3 

CH3 

The r e s u l t  t h a t  w e  had hoped for, namely a l a r g e  d i f f e rence  

i n  y i e l d s  between AHQ-2 and SH- runs, w a s  not rea l ized .  

d i f fe rences  i n  a d d i t i v e  r e a c t i v i t i e s  would have suggested mecha- 
Large 
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STRUCTURAL/REACTIVITY STUDIES. I1 579 

n i s t i c  d i f fe rences .  One would expect t h a t  the  quinonemethides 

from l A ,  6A, and 6B would be q u i t e  d i f f e r e n t  in t h e i r  r e a c t i v i t i e s  

toward accepting e l ec t rons  and fragmenting t o  r a d i c a l s  (SET mecha- 

nism) versus adduct formation and fragmenting t o  ions. 
The observed r e a c t i v i t y  order  r u l e s  out adduct formation as 

the  slow s t e p  in t he  mechanism. Adduct formation, which develops 

a f u l l  negative charge i n  r ing  A, would be expected t o  be slow 

with  the  2',5'-dimethyl models because the methyl groups a re  

e l e c t r o n  feeding and would d e s t a b i l i z e  carbanions; a l so ,  the  

Z 'me thy l  should s t e r i c a l l y  hinder the reaction. Ins tead ,  t he  

2',5'-dimethyl analogs were the  most reac t ive .  

The r e s u l t s  point toward a common slow s t e p  in t he  mechanisms 

of the  AHQ'2 and SH- reactions.  Most l i k e l y  t h i s  s t e p  is QM pro- 

duction. In genera l ,  highly subs t i t u t ed  Q M s  a r e  more s t a b l e  than 

unsubs t i tu ted  QMs. Thus, t he  order w e  observed for ease of 

fragmentation f i t s  an order f o r  ease of QM generation. The order 

does not, however, ru l e  out s i n g l e  e l ec t ron  t r a n s f e r  t o  the QM a s  

t h e  slow step.  

l i z a t i o n  from e lec t ron  r e l eas ing  r ing  methyl groups. 

The r ad ica l  na tu re  of QM' might der ive  some s t a b i -  

With t h e  proper subs t i t uen t s  on the  A r ing ,  QM formation may 

become so easy t h a t  t h i s  s t e p  would no longer be the  r a t e  l imi t ing  

s t e p ,  and the chemistry of subsequent r eac t ions  might be observable 

Therefore,  the  degradations of two 2',5'-dimethyl ring A models, 

having d i f f e r e n t  r i ng  B subs t i t uen t s  (E-CH,, 6B, and _"CF3, 6C). 

were compared. 

r e a c t i v e  than t h e  -o=CH3 model (100% confidence leve l ) .  

t he  d i f f e rence  w a s  not s u b s t a n t i a l  and may only r e f l e c t  d i f fe ren-  

ces in NaOB-induced fragmentation (6C > 6B). Again, i n  t h i s  

series, AHQ w a s  b e t t e r  than hydrosulfide ion  at inducing fragmen- 

t a t i o n  (99.96% confidence of a d i f fe rence) .  

As can be seen in Fig. 6 ,  t he  _"CF3 model is mre 

However, 

Competitive Model Degradations 

Model degradations in t he  presence of an excess of AHQ or NaSH 

show s imi l a r  fragmentation y i e lds ,  i r r e spec t ive  of the  B r ing  
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CH,-O 
I 

OH 

I I I I I i 
5 10 15 20 25 30 

TIME, (min) 

Figure  6. Comparison of phenol y i e l d s  as a func t ion  of time f o r  
t h e  120°C degradation of models 6B (R=m=Cli3) and 6C 
(Rz-CF3) in t h e  same reac to r  in t he  presence of 25 
equiv. of NaOH, 5 equiv. of glucose,  and 5 equiv. of 
AQ (per model), and of model 6C in t h e  presence o f  25 
equiv. of NaOIi and 5 equiv. of NaSH. 

s u b s t i t u e n t  and whether the  r eac t ions  are competit ive o r  no&. 

However, when l imi ted  amounts of add i t ive  were used dur ing  the  com- 

p e t i t i v e  degradations of our two most d i s s i m i l a r  E ring models 

(=-(XI3 and s C P  1, s i g n i f i c a n t l y  d i f f e r e n t  r e a c t i v i t i e s  w e r e  

observed. This w a s  demonstrated wi th  model p a i r s  lA/lD and 6B/6C; 
t h e  former have a methoxy group on t h e i r  A r ing ,  t he  l a t t e r  have 

two methyl groups. 

3 

Data from the  competitive degradations of IA (m-CH3) and 1 D  
(=-CP3) a r e  shown In Table 2. 

of each model i n  aq. a l k a l i  i n  t h e  presence of 0.8 equiv. of an 

The degrada t ions  employed 1 equiv. 
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TABLE 2 

Phenol Yie lds  from Competitive Model Degradat ions Performed 
w i t h  Limited Amounts of Addit ivea 

ID (XI 
Volume 

Low 

Low 

High 

High 

b 

Low 

Low 

HighC 

HighC 

Time,  

min 

20 

40 

20 

40 

20 

40 

20 

40 

Phenol Yie ld  from 1A (%I 

SH-/ OH- OH- SH- 

25.5 - 1.1 = 24.4 

35.7, 34.9 - 2.6 32.7 

18.4 - 0.8 = 17.6 

29.6' - 1.9 * 27.7 

AHQf OH OH- AHQ 

16.2 - 1.2 15.0 

19.4, 18.2 - 2.4 = 16.2 

11.3 - 1.0 = 10.3 

15.5 - 2.1 = 13.4 

Phenol Yie ld  from 

SH'f OH' OH- SH- 

29.7 - 5.0 = 24.7 

43.8, 45.7 - 10.1 = 34.7 

35.2 - 7.0 = 28.2 

22.6 - 3.4 = 19.2 

AHQ /OH- OH- AHQ 

23.9 - 4.4 5 19.5 

30.1, 30.6 - 8.6 = 21.8 

18.1 - 4.1 = 14.0 

26.8 - 8.1 = 18.7 

aOne equiv. of m d e l s  1A and LD w a s  mixed wi th  0.8 equiv. of a d d i t i v e  
,,and 25 equiv. of NaOH and hea ted  a t  135" f o r  20 o r  40 min. 
Low and h igh  r e f e r  t o  1.5 and 3.5 mL volumes. 
F i f t y  equiv. of NaOH were used i n  t h i s  case. C 

a d d i t i v e  (SH- o r  AHQ). This  l e v e l  of a d d i t i v e  w a s  chosen because 

i t  was t h e  best compromise between low a d d i t i v e  l e v e l s  and our  

a b i l i t y  t o  conclus ive ly  d i s t i n g u i s h  addi t ive- induced r e a c t i o n s  

from NaOH-induced r e a c t i o n s .  Under t h e s e  c o n d i t i o n s ,  NaOH-induced 

f ragmenta t ion  r e a c t i o n s  will compete; t h e r e f o r e ,  t h e  "net" y i e l d  

caused by a d d i t i v e  induced f ragmenta t ion  w a s  c a l c u l a t e d  (columns 5 

and 8 of t h e  t a b l e ) .  

Both high and l o w  volume r e a c t i o n s  were employed t o  observe 

how t h e  y i e l d s  might change wi th  r e a c t a n t  concent ra t ion  changes. 

A t  low volume, t h e  occurrence of r e a c t i o n s  between " intermediates"  

would be mre l i k e l y .  While t h i s  could l e a d  t o  product  d i s t r i b u -  

t i o n  changes, few e f f e c t s  were observed. There w a s  roughly a 5% 

y i e l d  i n c r e a s e  in both phenol products  w i t h  t h e  volume changes in 
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582 D I W E L  AND SCHULLER 

each case. This  result :  is i n  agreement wi th  t rends  observed i n  - 
t h e  soda degradations.  l2 

A t  reduced AHQ l e v e l s ,  t h e  =-CF3 model (1D) appears  t o  be more 

r e a c t i v e  than the  f l H 3  model (la) i n  n e t  y i e l d ;  wi th  SH-, the d i f f e r -  

ence between 1A and ID is small ,  probably wi th in  t h e  experimental 

e r r o r s  of t he  measurements. Over a series of s i x  t i m e  measurements, 

1 B  (=-Cl) w a s  cons is ten t ly’more  r eac t ive  than 1A (=-CH3) i n  ne t  

y i e l d  i n  t h e  presence of 0.8 equiv. of AHQ a t  150°C. 

F i n a l l y ,  competit ive degradations of the  r C H 3  model 6B and 

t h e  E-CF~ model 6C were conducted. 

pe ra tu re s  can be used, thereby extending t h e  l i f e t i m e s  o f ,  and 
allowing better oppor tuni ty  fo r  t he  r eac t ions  between, t h e  reac- 

t i v e  in te rmedia tes .  

U i th  these  models, lower tem- 

Figure 7 shows a comparison of t he  phenol y i e l d s  from models 

6B and C when degraded simultaneously a t  120°C i n  t h e  presence of 

l imi t ed  amounts of AHQ and NaSH. 

t i a l l y  r e a c t i v e  than the w d e l  in the presence of the 

add i t ives .  The d a t a  i n  the  f igu re  i n d i c a t e  t h a t  AHQ is  depleted 

a f t e r  about 10-15 minutes and that NaOH-induced fragmentation com- 

mences a t  t h i s  t ime .  

The ,“CP3 model was substan- 

The r e a c t i v i t y  d i f f e rences  i n  the  presence of AHQ and NaSH 

cannot be accounted f o r  by d i f f e rences  i n  soda c o n t r o l  rates, 

which are smal l  at 12OoC, or  i n  secondary phenol consumption 

reac t ions13  ( a s  seen  i n  Fig. 2). Secondary r e a c t i o n s  would as 

expected be ( a )  d i f f e r e n t  f o r  r eac t ions  producing 2,s-dimethyl 

- vs. 3-1nethoxysubstituted s ty rene  by-products, (b )  less a t  120’ 

150”C, (c) more apparent at long r eac t ion  times, ( d )  more pro- 

nounced wi th  5 equiv. of AHQ per model (Fig. 6 )  s. 0.4 equiv. 

(Fig. 7 )  and (el low i n  the  NaSH case where fewer s t y r e n e  by- 

products are formed.3 

Under t h e  condi t ions  of l imi ted  a d d i t i v e  l e v e l s ,  SH- induces 

more fragmentation than  AHQ. The reason f o r  t h i s  is not  obvious. 

One poss ib l e  explana t ion  is t h a t  t he  concen t r a t ion  of AHQ-2 i s  

less than a n t i c i p a t e d  because of non-quantitative reduct ion  by 

glucose or  r e a c t i o n  wi th  r e s idua l  oxygen; t he  r e a c t i o n s  were per- 
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Figure 7. Phenol y i e l d s  as a funct ion of time f o r  the 120°C 
degradations of 1 equiv. each of models 68 and C i n  the 
same reactor in the presence of 25 equiv.  of NaOH and 
no addit ive  (lower l i n e s ) ,  1 equiv. of AQ and glucose 
(middle curves) and 1 equiv.  of NaSH (upper curves).  
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584 DIMMEL AND SCHULLER 

formed with extremely low l e v e l s  of r e a c t a n t s ,  l e v e l s  where even-  

trace amounts of oxygen could  have an e f f e c t .  The a b i l t y  of NaSH 

t o  s u b s t a n t i a l l y  outper form AHQ a t  low a d d i t i v e  l e v e l s  should  not  

be  taken  t o  r e f l e c t  what might happen d u r i n g  pulp ing  s i n c e  t h e  

AQ/AHQ redox cycle1 o p e r a t e s  i n  t h e  l a t t e r  case. 

DISCUSSION AND CONCLUSIONS 

Addi t ive  induced model f ragmenta t ion  r e a c t i o n s  appear  t o  have 

a common s low s t e p ,  presumably format ion  of a quinonemethide,  

which is s e n s i t i v e  t o  s u b s t i t u e n t s  l o c a t e d  on r i n g  A but not  t o  

s u b s t i t u e n t s  on r i n g  B. Our r e s u l t s  i n d i c a t e  t h a t  t h e  slow s t e p  

in a d d i t i v e  induced f ragmenta t ion  of l i g n i n  model compounds cannot 

be  n u c l e o p h i l e  a d d i t i o n  t o  a quinonemethide or f r a g m e n t a t i o n  of 

t h e  3 - a r y l  e t h e r  bond. 

The c l o s e  s imil iar i t ies  i n  t h e  ra tes  of AHQ and SH- degrada- 

t i o n s ,  whece t h e  a d d i t i v e s  are used i n  e x c e s s ,  s u g g e s t s  a common 

slow s t e p ,  namely quinonemethide g e n e r a t i o n .  The e f f e c t i v e n e s s  of 

an a d d i t i v e  (AHQ-2 > Sff- > g l u c o s e )  can  be accounted for based on 

the e f f i c i e n c y  by which t h e  a d d i t i v e  fragments  t h e  model % com- 

p e t i n g  s ide- reac t ions .  

K i n e t i c  I n t e r p r e t a t i o n  of A d d i t i v e  E f f e c t s  

The rate of g e n e r a t i o n  of f ragments  € o r  a 

t h e  f o l l o v i n g  express  Lon: 

Frag. Rate = kH0 [HO-] [Model] + kAd 

where kH0 and kAdd are t h e  rate c o n s t a n t s  f o r  

model should  obey 

t h e  soda  induced 

and a d d i t i v e  induced f ragmenta t ion  r e a c t i o n s ,  r e s p e c t i v e l y ,  and 

r e a c t a n t  o r d e r s  are assumed t o  be 1. The . :oncentrat ion of t h e  

quinonemethide (QM) can be c a l c u l a t e d  by a p p l y i n g  t h e  s t e a d y  s t a t e  

assumption f o r  r e a c t i v e  i n t e r m e d i a t e s  and c o n s i d e r i n g  t h e  v a r i o u s  

r e a c t i o n s  a v a i l a b l e  (Fig.  1) t o  the QM: 

k [Model] 
( 7 )  QM IQMl  = 

kAdd [Add] + kvEIHO-] + G E [ H 0 - ]  + kCON IArO-I  f k-qa[HO-l 
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STRUCTURAL/REACTIVITY STUDIES. I1 585 

where $E and qE are the  rate c o n s t a n t s  f o r  t h e  two r e a c t i o n s  

which produce v i n y l  e t h e r  by-products, kCON is  t h e  ra te  cons tan t  

f o r  condensat ion r e a c t i o n s  i n v o l v i n g  phenols  (ArO-), and k and 

k-QM are t h e  forward and r e v e r s e  rate c o n s t a n t s  f o r  QU formation 

and r e t u r n  t o  t h e  model. 

QM 

Combining Equations ( 6 )  and (7)  gives :  

where X is t h e  f r a c t i o n  of r e a c t i o n  which is a d d i t i v e  induced 

f ragmenta t ion  ~ 9 -  a l l  o t h e r  r e a c t i o n s  of t h e  QM: 

I f  t h e  kAdd [Add] t e r m  i s  l a r g e  r e l a t i v e  t o  t h e  o t h e r  terms 

i n  t h e  denominator of t h e  X term, e x p r e s s i o n  ( 8 )  reduces to: 

Frag. Rate = so [HO-I [Hodel] + kQM [Model] . ( 9 )  

According t o  t h i s  express ion ,  the rate of fragment g e n e r a t i o n  should 

be independent of a d d i t i v e  c o n c e n t r a t i o n  above a c e r t a i n  l e v e l .  

We have observed such e f f e c t s  i n  our  s t u d i e s  and others have seen 

similar e f f e c t s  i n  k r a f t  d e l i g n i f i c a t i o n  systems.18 

The fragmentat ion e f f i c i e n c i e s  which we observed f o r  t h e  reac- 

t i o n s  of excess w i t h  models. namely AHQ > SH' > glucose ,  can be 

accounted f o r  by assuming t h a t  X is l a r g e s t  f o r  AHQ and smallest 

f o r  glucose. T h i s  i n t e r p r e t a t i o n  accounts  f o r  the a d d i t i v e  y i e l d  

d i f f e r e n c e s  while s t i l l  main ta in ing  that QM format ion  is rate 

determining f o r  t h e  a d d i t i v e  r e a c t i o n s .  I n  essence  t h e  a d d i t i v e  

a f f e c t s  t h e  product  determining s t e p s ,  rather t h a n  t h e  ra te  de ter -  

mining s tep .  

Interpretation of the Competi t ive Reaction Xeeults 

Two s o l u b l e ,  model l ignfn quinonemethfdes (QM and QM') present  

in t h e  same r e a c t i o n  v e s s e l  might undergo the fo l lowing  SET 

r e a c t i o n s :  
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586 DTMMEL AND SCHULLER 

QM + AHQ-2 QH- + AHQ- 

I f  QM and QH' d i f f e r  only i n  t h e i r  r i n g  B s u b s t i t u e n t s ,  the  

r a t e s  of quinonemethide formation and t h e  acceptance of e l ec t rons  

by t h e  quinonemethides, Eq. (10) and (111, should proceed a t  the 

same ra t e s .  A l s o ,  t he  equilibrium cons tan t  f o r  Eq. (12) should be 

1.0. Many SET r eac t ions  are cha rac t e r i zed  by SET s t e p s  between 

spec ie s  a s  p a r t  of a chain mechanism;19-21 t h e r e f o r e ,  t he  

equi l ibr ium ind ica t ed  by Eq. (12) should occur. The ex ten t  of 

e l e c t r o n  exchange ind ica t ed  by Eq. (12) may be l i m i t e d  by the  

expected low concent ra t ion  of t he  in te rmedia tes ;  however, roughly 

15% QM-QM coupling products have been observed in a c lose ly  

r e l a t e d  systems involving AHQ-2 and r e a c t i v e  QMs.22 

Fragmentation of QF? and QM" would produce t h e  same r ing  A 

fragments, but d i f f e r e n t  r ing  B fragments. The s u b s t i t u e n t  on 

r i n g  B can now exe r t  its influence and the  r e a c t i o n  r a t e s  of s t eps  

(13) and (14) w i l l  d i f f e r .  It is expected t h a t  one of t he  

fragmentation types ,  [Eq. (13a)/(14a) o r  Eq. (13b) / (14b) l ,  will pre- 

dominate. 

arguments apply; product d i s t r i b u t i o n s  from compet i t ive  r eac t ions  

Since QM-AHQ adduct r eac t ions  are r e v e r s i b l e , l l  s i m i l a r  
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STRUCTURAL/REACTIVITY STUDIES. I1 s a i  

w i l l  r e f l e c t  t h e  s t a b i l i t i e s  of the r e s u l t i n g  r i n g  B phenolate  ion 

fragments. 

Experimental ly ,  we observed t h a t  t h e  s imul taneous  degrada t ions  

of t w o  d i f f e r e n t  sets of models w i t h  l i m i t e d  amounts of e i t h e r  

AHQ'2 or NaSH produced t h e  fo l lowing  r e s u l t :  

r i n g  B r C F 3  groups fragmented f a s t e r  than  t h e  ones having 

- d H 3  groups. 

i n t e r m e d i a t e s  occur  and t h a t  ring B is l i b e r a t e d  as an ion, and not  

a r a d i c a l ,  dur ing  t h e  f ragmenta t ion  s tep .  

t h e  models having 

This  r e s u l t  i n d i c a t e s  t h a t  i n t e r a c t i o n s  between QM 

I f  e q u i l i b r i a  between quinonemethide i n t e r m e d i a t e s ,  Eq. (121, 

do not  occur ,  t h e  y i e l d s  of r C F 3  and r C H 3  phenols  would be the  

same, because t h e  concent ra t ion  of quinonemethide i n t e r m e d i a t e  

(QMs' o r  QM-adducts) should be t h e  same. However, t h e  y i e l d s  are 

d i f f e r e n t  when a d d i t i v e  l e v e l s  are low. Because not a l l  t h e  QMs 

are converted t o  QMs' or QM-adducts, some are l e f t  t o  p a r t i c i p a t e  

i n  e q u i l i b r i u m  r e a c t i o n s ,  such as i n d i c a t e d  by Eq. (12) .  and the 

most r e a c t i v e  QM' or QM-adduct is then  a b l e  t o  produce more 

fragmentat ion.  

S ince  the predominant product  i n  the presence  of low a d d i t i v e  

l e v e l s  is t h e  g-CP3 phenol, t h e  most r e a c t i v e  QM i n t e r m e d i a t e  mst 

be  t h e  B r i n g  _"CP3 QH' or QM-adduct. The h i g h  r e a c t i v i t y  of thfs 
i n t e r m e d i a t e  is due t o  i ts  a b i l i t y  t o  g e n e r a t e  a r e l a t i v e l y  s t a b l e  

- d F 3  phenola te  ion. 

All i n d i c a t i o n s  are t h a t  SH' can  add r e v e r s i b l y  t o  QMs under 

pulping Where t w o  d i f f e r e n t  QMs are p r e s e n t ,  two 

QM-SH adducts  are p o s s i b l e  even though t h e  format ion  of t h e  QMs is 

t h e  rate determining s tep.  The adduct  u h i c h  fragments  t h e  f a s t e s t  

w i l l  dominate t h e  product d i s t r i b u t i o n  when SH' is in l i m i t e d  

supply. This is what we have observed. 

S i m i l a r  arguments could be made f o r  AHQ-' and QM-AHQ adducts .  

s i n c e  these r e a c t i o n s  a r e  revers ib le1 '  and s h o u l d  f a v o r  product ion 

of t h e  m-CF3 phenol. 

our  r e s u l t s .  I f  t h e  mechanism is SET, f ragmenta t ion  rmst  proceed 

in a manner which genera tes  an A r i n g  r a d i c a l  and a B ring Ion, 
Eq. (13b) and (14b). This p r e f e r e n c e  can be r a t i o n a l i z e d  based 

However, t h e  SET mechanism is not  ruled out  by 
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588 DIMHEL AND SCHULLER 

on a resonance form i n  which the  B-carbon of t h e  A r i n g  s tyrene  ~ 

fragment is better ab le  t o  s t a b i l i z e  a r a d i c a l  in te rmedia te  than 

an anion intermediate. The f a c t  t ha t  t he  y i e l d s  of t he  s tyrene  

products are o f t en  very low i n  AHQ-induced model degradation 

r e a c t i o n ~ ~ ~ ~ ~  suggests t h a t  the  s tyrene  is produced as a phenolate 

r a d i c a l  which subsequently polymerized. 

EXPERIMENTAL SECTION 

The synthes is  of the  compounds, t he  genera l  degradation proce- 

dure, and methods of ana lys i s  were previously described-l '  

changes in t he  degradation procedure are described below. 

Spec i f i c  

Degradation Procedure. Except f o r  AQ and AHQ-diacetate, which 

had t o  be weighed i n t o  each bomb (small pressure  ves se l ) .  a l l  
r eac t an t  so lu t ions ,  IS so lu t ions ,  etc., were added t o  t h e  bombs 

with an au tomatk  p t p e t t e .  

Standard so lu t ions  of glucose, sodium hydroxide, and sodium 

s u l f i d e  in water, and model compounds and p-isopropylphenol ( I S )  

in aq. NaOH w e r e  prepared j u s t  p r i o r  t o  use. 

present i n  0.015 lPnrole amounts, and the  o the r  reagents w e r e  

ad jus ted  t o  0.015 mmole = 1 equiv. Generally, t h i s  meant t h e  use 

of 25 equiv. of NaOH and 5 equiv. of additive/model. The amount 

of NaOH so lu t ion  used w a s  ad jus ted  t o  compensate f o r  add i t ive  con- 

sumption (i.e., 4 equiv./AHQ-diacetate) or add i t ive  l i b e r a t i o n  

(Na2S + H20 NaSH + NaOH). 

The models were 

The appropr la te  so lu t ions  and make-up water were added t o  the  

cool bombs. For degradations involving AQIglucose and AHQ- 
d iace ta t e ,  the  bombs w e r e  prewarmed along wi th  soda con t ro l s  at 

60' f o r  30 min p r i o r  t o  immersion i n  the  o i l  bath. This prewarm- 

ing  helped t o  give a high concentration of AEQ-2 p r i o r  t o  immersion. 

NO model fragmentation (even f o r  t he  mOst reac t ive  models, 24 and 

25) occurred as a r e s u l t  of prewarming i n  the  presence of NaOH o r  

NaOHjadditive so lu t ions .  

After removal from t h e  hot o i l  bath,  t he  bombs w e r e  immediately 

cooled i n  i c e r a t e r ,  opened, d i l u t e d  wi th  IS so lu t ion ,  and the  
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